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Abstract. Vestibular compensation is simulated as 
learning in a dynamic neural network model of the 
horizontal vestibulo-ocular reflex (VOR). The bilateral, 
three-layered VOR model consists of nonlinear units 
representing horizontal canal afferents, vestibular nuclei 
(VN) neurons and eye muscle motoneurons. Dynamic 
processing takes place via commissural connections that 
link the VN bilaterally. The intact network is trained, 
using recurrent back-propagation, to produce the VOR 
with velocity storage integration. Compensation is sim- 
ulated by removing vestibular afferent input from one 
side and retraining the network. The time course of 
simulated compensation matches that observed experi- 
mentally. The behavior of model VN neurons in the 
compensated network also matches real data, but only 
if connections at the motoneurons, as well as at the VN, 
are allowed to be plastic. The dynamic properties of 
real VN neurons in compensated and normal animals 
are found to differ when tested with sinusoidal but not 
with step stimuli. The model reproduces these conflict- 
ing data, and suggests that the disagreement may be 
due to VN neuron nonlinearity. 

Introduction 

Vestibular compensation is one of the oldest and most 
well studied paradigms in motor learning (Schaefer and 

Abbreviations: AC, acutely lesioned network, before compensation; 
GR, gain restored, compensating network; lb, left bias (left non- 
vestibular input unit); lhc, left horizontal canal afferent (left input 
unit); lr, lateral rectus motoneuron (left output unit); lvnl, 2, left 
vestibular nuclei neurons (left hidden units); mr, medial rectus mo- 
toneuron (fight output unit); NE, nystagmus eliminated, compensat- 
ing network; NM, normal network, intact and fully trained; pass, one, 
input/desired-output training sequence presentation; rb, right bias 
(right nonvestibular input unit); rhc, fight horizontal canal afferent 
(right input unit); rvnl, 2, right vestibular nuclei neurons (right hidden 
units); SR, spontaneous rate; tick, one time step of network processing 
(one cycle); VOR, vestibulo-ocular reflex; VN, vestibular nuclei 

Meyer 1974). It is the process whereby the normal 
functioning of vestibular responses is wholly or partially 
regained following removal of one of the paired vestibu- 
lar receptors. Although vestibular compensation has 
been well described behaviorally and neurophysiologi- 
cally, the neural mechanisms underlying this important 
form of plasticity have yet to be completely understood. 

Vestibular function is evaluated by analyzing the 
vestibulo-ocular reflex (VOR). The VOR stabilizes gaze 
by producing eye rotations that counterbalance head 
rotations. It is centered on brainstem neurons in the 
vestibular nuclei (VN) that relay head velocity signals 
from semicircular canal afferent neurons to the mo- 
toneurons of the eye muscles (Wilson and Melvill 
Jones 1979). The brainstem VOR circuitry also pro- 
cesses the canal signals, increasing their time constants 
from about five seconds in monkeys (Buttner and 
Waespe 1981) to about 20s (Raphan et al. 1979) 
before transmitting this signal to the motoneurons. 
This process is known as velocity storage (ibid.). 

The VOR is a bilaterally symmetric, reciprocal 
structure. Velocity storage may be mediated by the 
inhibitory commissural connections that link the VN 
bilaterally (Blair and Gavin 1981). Removal of the 
vestibular receptors from one side (hemilabyrinthec- 
tomy) unbalances the VOR, resulting in continuous eye 
movement that occurs in the absence of head move- 
ment, a condition known as spontaneous nystagmus. 
Such a lesion also reduces VOR sensitivity (gain) and 
eliminates velocity storage. Compensatory restoration 
of VOR occurs in stages (Wolfe and Kos 1977; Maioli 
et al. 1983; Fetter and Zee 1988). It begins by quickly 
eliminating spontaneous nystagmus, and continues by 
increasing VOR gain. Paradoxically, recovery of veloc- 
ity storage is minimal. 

A previous model (Galiana et al. 1984) identified 
many of the connections involved in vestibular compen- 
sation at the level of the bilateral VN. That model, 
however, was static and linear, and compensation was 
simulated by making arbitrary connection weight 
changes. The purpose of this study is to simulate com- 
pensation in a dynamic, nonlinear model of the VOR, 
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receptors. Output units correspond to motoneurons of  
the lateral (lr) and medial (mr) rectus muscles of  the left 
eye. Neurons in the VN are represented by hidden units 
on the left ( lvnl ,  lvn2) and right (ton l, rvn2) 
sides of the model brainstem. Bias units stand for 
nonvestibular inputs, which may originate through- 
out the brainstem and cerebellum, on the left (lb) 
and right (rb). 

Network connectivity reflects the known anatomy 
of the mammalian VOR (Wilson and Melvill Jones 
1979; Buttner-Ennever 1988). To represent the VOR 
relay, input project to hidden units and hidden project 
to output units. The hidden-to-output connection 
weights are initially fixed, because it is generally be- 
lieved that plastic changes occur only at the VN 
(Galiana et al. 1984). The fixed weights to the outputs, 
of absolute value 0.50, have a crossed, reciprocal pat- 
tern (Table 1A). Left hidden units are inhibitory to lr 
and excitatory to to mr, while right hidden units have 
the opposite output projection pattern. Recurrent con- 
nections occur between hidden units on opposite sides 
of  the brainstem. Because the vestibular commissures 
are inhibitory in mammals, the weights of  the recurrent 
connections are constrained to be zero or less. Bias 
connection weights are initially fixed at zero to the 
outputs and at - 1 . 0 0  to the hidden units, to reflect 
inhibition by cerebellar Purkinje cells which project to 
the VN but not to the motoneurons. The bias units 
have constant states of  0.50. 

Fig. 1. Recurrent neural network model of the horizontal vestibulo- 
ocular reflex (VOR). lhc, rhc: left and right horizontal canal afferents 
(input units); lvnl, lvn2, rvnl, rvn2: vestibular nuclei neurons on the 
left and right sides of the model brainstem (hidden units); lr, mr: 
motoneurons of the lateral and medial rectus muscles of the left eye 
(output units); lb, rb: left and right nonvestibular inputs (bias units) 

wherein the weights are changed objectively using a 
neural network learning algorithm. By adjusting net- 
work parameters to match better the model and actual 
data, hypotheses concerning the synaptic basis of 
vestibular compensation can be developed. Also, be- 
cause the model is neurally based, it can explain some 
of  the paradoxical phenomenology of  the VOR in 
normal and compensated animals. 

Network architecture 

The horizontal VOR is modeled as a three-layered 
neural network, with two each of  input, output and 
bias units and four hidden units (Fig. 1). All of  the 
units are nonlinear, computing the weighted sum of  
their inputs and passing it through the sigmoidal 
squashing function (Rumelhart  et al. 1986). As such, 
the units have an approximately linear response for 
midrange input sums, but are asymptotically driven 
into saturation (one) or cut-off (zero) for large positive 
or negative net inputs, respectively. Unit responses are 
0.50 for net inputs of  zero. Input units represent after- 
ents from the left (lhc) and right (rhc) horizontal canal 

Training the normal network 

The simulations begin by training the network shown in 
Fig. 1, with both vestibular inputs intact (normal net- 
work), to produce the VOR with velocity storage 
(Anastasio 1991). The network was trained on dynamic 
input/desired-output trajectories using a recurrent back- 
propagation learning algorithm (Williams and Zipser 
1989). Briefly, the algorithm finds the error between 
actual- and desired-outputs, and computes the gradient 
of this error in weight space. The gradient is then used 
to update the weight values in the direction of  reduced 
error. The algorithm is continuous in the sense that 
learning occurs contemporaneously with the dynamic 
behavior of  the network. Input and desired-output se- 
quences correspond to canal afferent signals and mo- 
toneuron eye-velocity commands that underlie the 
horizontal VOR response to two impulse head rota- 
tional accelerations, one to the left and the other to 
the right. Each response sequence is 30 time steps 
(ticks) long; each tick equals 5 s. 

Input and desired-output sequences for rhc and lr 
are shown in Fig. 2A (dotted and dashed, respectively). 
The sequences for lhc and mr (not  shown) are the 
inverse of  those for rhc and lr, respectively. Head 
acceleration to the right (ticks 31 through 60) excites 
the  and inhibits lhc. The appropriate VOR eye move- 
ment to the left would be produced by excitation of  lr 
and inhibition of  mr. The opposite pattern obtains for 
head rotations to the left (ticks 1 through 30). Output 



T a b l e  IA .  Lea rned  we igh t  ma t r i x  for the intact ,  ho r i zon ta l  ves t ibu to-ocu la r  reflex ( V O R )  neura l  
ne twork  model .  Th is  ne twork  was  t ra ined  to p roduce  m o t o n e u r o n  ac t iva t ions  tha t  are equa l  and  
oppos i te  to  cana l  afferent  ac t iva t ions ,  effecting the VOR,  bu t  have  t ime cons tan t s  four  t imes 
longer,  reflecting veloci ty  s torage,  lb and  rb, left  and  r igh t  nonves t ibu la r  neurons  (b ias  uni ts) ;  lhc 
and  rhc, left  and  r igh t  hor izon ta l  cana l  afferents ( inpu t  uni ts) ;  lvn and  rvn, left  and  r igh t  
ves t ibu la r  nuclei  neurons  (h idden  uni ts ) ;  lr and  mr, l a te ra l  and  media l  rectus  musc le  m o t o n e u r o n s  
of  the left eye ( o u t p u t  uni ts) ;  - ,  d i sa l lowed connect ion.  Bias- to-hidden,  b i a s - to -ou tpu t  and  
h idden - to -ou tpu t  weights  were fixed du r ing  learn ing  

from: lb rb lhc rhc lvn l lvn2 rvn l rvn2 
to: 

lvnl - 1.000 - 6.154 - 5 . 3 4 0  - - - 4 . 5 7 3  - 0 . 9 6 4  
lvn2 - 1.000 - 5.274 - 5 . 8 3 9  - - - 0 . 8 6 8  - 0 . 0 0 3  
rvnl - - 1.000 - 5.759 6.723 - 4 . 4 2 3  - 1.288 - - 
rvn2 - - 1.000 - 5.276 4.554 - 0 . 6 4 4  - 0 . 0 0 1  - - 
/r 0.000 . . . .  0.500 - 0 . 5 0 0  0.500 0.500 
mr - 0.000 - - 0.500 0.500 - 0 . 5 0 0  - 0 . 5 0 0  
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T a b l e  lB .  Learned  we igh t  ma t r i x  resul t ing  f rom re t ra in ing  fo l lowing  left hemi l aby r in thec tomy  
( r emova l  o f  left  i npu t  uni t ,  lhc). Ret ra in ing  wes t e rmina ted  jus t  af ter  the ne twork  had  learned  to 
res tore  V O R  gain,  before  any  t ime cons t an t  l eng then ing  (ve loci ty  s torage)  had  recovered.  
Abbrev i a t i ons  as in Table  1. All  a l lowed  connec t ions  h a d  modif iable  weights  

from: lb rb lhc rch lvn I lvn2 rvn 1 rvn2 
to: 

lvnl - -0 .753 - - - -5 .166 - - - -4 .377 --0.811 
lvn2 0.438 - - - -5 .027 - - - -0 .089 --0.041 
rvnl - --5.453 - 4.976 --4.670 - -2 .464 - - 
rvn2 - - -4 .452 - 2.918 --0.838 --0.725 - - 
lr --2.413 . . . .  0.629 -- 1.217 2.376 1.446 
mr - 2.413 - - 0.629 1.217 - -2 .376 -- 1.446 
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Fig. 2 A - D .  S imula ted  c o m p e n s a t i o n  
in  the V O R  neura l  n e t w o r k  model .  
Responses  of  o u t p u t  un i t  lr (sol id)  
are  s h o w n  a t  each  s tage  o f  compen-  
sa t ion,  reached af ter  increas ing  num-  
bers  of  t r a in ing  sequency 
p resen ta t ions  (passes) .  N u m b e r s  o f  
passes  co r r e spond  to those  in a net- 
w o r k  where in  on ly  the weigh ts  a t  the 
h idden  un i t  level are modif iable .  A 
acute ly  fo l lowing  the lesion; B af ter  
spon t aneous  n y s t a g m u s  has  been 
e l iminated;  C af ter  V O R  ga in  has  
been la rge ly  restored;  D af ter  full  re- 
covery  o f  VOR.  Des i r ed -ou tpu t  re- 
sponses  o f  lr (dashed)  sh. own  in al l  
plots .  I n t ac t  i npu t  f rom rhc (do t t ed)  
s h o w n  in A on ly  
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response magnitudes equal those of the inputs (gain of 
1.00), signifying that VOR eye rotations should perfectly 
counterbalance head rotations. To reflect velocity stor- 
age, the output responses decay more slowly than the 
inputs, with time constants of four and one tick (20 and 
5 s), respectively. A pure delay of one tick between input 
and output represents synaptic delay in the three-layered 
network. Between head movements, all inputs and de- 
sired-outputs have the same spontaneous rate (SR) of 
0.50. With SRs balanced, no reciprocal eye velocity 
command is given and, consequently, no VOR eye 
movement is made. 

The normal network learns the VOR transformation 
after about 4,000 training sequence presentations 
(passes); final weights are shown in Table 1A. The 
network develops reciprocal connections from input to 
hidden units, with lhc exciting and inhibiting left and 
right side hidden units, respectively; rhc has the opposite 
hidden unit projection pattern. This pattern reflects 
actual VOR organization (Wilson and Melvill Jones 
1979) with the inhibitory connections corresponding to 
open-loop commissures. The recurrent connections, cor- 
responding to closed-loop commissures, essentially form 
an integrating (lvn 1 and rvn 1) and a nonintegrating (lvn2 
and rvn2) pair of hidden units (Anastasio 1991). The 
integrating pair subserve storage in the network. They 
have strong mutual inhibition and thus exert net positive 
feedback on themselves. The nonintegrating pair have 
almost no mutual inhibition but achieve time constant 
lengthening by coupling to the integrating pair. For both 
open- and closed-loop commissures, an inhibitory in- 
terneuron with unity gain is implied to satisfy Dale's law. 

Unit responses are characterized by SR, gain and 
time constant. The SRs of hidden and output units are 
their responses between head movements, when both 
inputs (or just rhc in left hemilabyrinthectomized net- 
works) are at 0.50. Gain is defined as the absolute value 
of the peak change from SR of any unit divided by the 
peak change from 0.50 of input unit rhc. Time constants 
are estimated by fitting single exponential curves to unit 
responses. In the fully trained, normal network, hidden 
units have lower SRs, higher gains, and longer time 
constants than the input units (Anastasio 1991). 

Simulating vestibular compensation 

After the normal network is trained, with both inputs 
intact, vestibular compensation can be simulated by 
removing the input from one side and retraining. Left 
hemilabyrinthectomy produces deficits in the model that 
correspond to those observed experimentally. Removal 
of lhc removes excitatory and inhibitory input to left and 
right hidden units, respectively, thereby decreasing left 
and increasing right hidden unit SRs. Due to the crossed 
hidden-to-output connections (Table 1A), this hidden 
unit SR imbalance causes a large increase and decrease 
in the SRs of lr and mr, respectively. The responses of 
output unit lr acutely following left input removal are 
shown in Fig. 2A (solid). Acutely, the SR of lr is greatly 
increased above normal (Fig. 2, dashed); that o f  mr  (not 

shown) is decreased by the same amount. This output 
SR imbalance would result in eye movement to the left 
in the absence of head movement (spontaneous nystag- 
mus). The gain of the outputs is greatly decreased. This 
is due to the removal of one half of the network input 
and to the SR imbalance forcing the output units into 
the low gain extremes of the squashing function. Veloc- 
ity storage is also eliminated by left input removal, due 
to events at the hidden unit level (see below). 

During retraining, only connections at the hidden 
layer (direct vestibular, open- and closed-loop commis- 
sural and bias) are modifiable, in accordance with the 
assumption of the previous model (Galiana et al. 1984). 
Hidden-to-output and bias-to-output connections re- 
main fixed as in Table 1A. The relative time course of 
simulated compensation is similar to that observed 
experimentally. Spontaneous nystagmus is eliminated 
after 200 passes, as the SRs of the output units are 
brought back to their normal level (Fig. 2B). Output 
unit gain is largely restored by 900 passes, but time 
constant remains close to that of the inputs (Fig. 2C). 
At this stage, VOR gain has increased, but its time 
constant has remained low, indicating loss of velocity 
storage. This stage approximates the extent of experi- 
mantally observed compensation (Wolfe and Kos 1977; 
Maoioli et al. 1983; Fetter and Zee 1988). Completely 
restoring the normal VOR with full velocity storage 
requires over seven times more retraining (Fig. 2D). 
This compensatory time course is consistent with reduc- 
tion of network error in that the stages bringing more 
error reduction occur sooner. 

With the hidden-to-output connections fixed, synap- 
tic changes underlying network compensation are con- 
strained to occur at the hidden layer. The evolution in 
the strengths of synapses onto lesion-side hidden unit 
lvn l  are shown in Fig. 3. The changes onto lvn2 are 
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Fig. 3. Evolution of some weights during compensation in the VOR 
neural network model. Weights to lesion-side hidden unit lvnl are 
shown from the left bias unit lb (dashed), intact-side hidden units 
rvnl (dotted) and rvn2 (scored) and intact canal afferent rhc (solid). 
Only weights at the hidden unit level are modifiable in this simulation 



similar to those onto lvnl, while those onto intact-side 
hidden units (rvnl and rvn2) are essentially the oppo- 
site. Network balance is restored (and spontaneous 
nystagmus is eliminated) primarily by increases in exci- 
tatory and inhibitory bias to left and right hidden units, 
respectively. The inputs from the remaining canal (rhc), 
which are inhibitory to left and excitatory to right 
hidden units, initially decrease in absolute value, help- 
ing to rebalance hidden unit SRs bilaterally. Gain is 
subsequently recovered by redoubled increases in the 
strengths of the reciprocal inputs from rhc, which are 
balanced by increased bias. Overall, the closed-loop 
inhibitory commissural connections change little. The 
largest changes in these weights occur at the stage 
corresponding to physiological compensation (900 
passes), where they increase slightly in absolute value to 
right hidden units, but decrease almost to zero to left 
hidden units (Fig. 3). 

These results can be compared to those of the 
previous model (Galiana et al. 1984) that suggested that 
vestibular compensation can be mediated entirely by 
changes in the strengths of the closed loop commissures, 
and predicted that closed-loop commissural inhibition 
should be lower to the lesion-side than to the intact-side. 
In the current model, the learning algorithm did change 
the clossed-loop weights in the direction predicted by the 
previous model, but rather than using closed-loop 
weight changes alone, it effected compensation primarily 
with large changes in bias, direct vestibular and open- 
loop commissural connections. The current model can- 
not adequately compensate when the simulation is rerun 
with only the closed-loop commissures modifiable. Un- 
der this constraint, the algorithm manages to eliminate 
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spontaneous nystagrnus by decreasing closed-loop inhi- 
bition to zero to the lesion-side and increasing it by 
almost 20 times to the intact-side. However, the al- 
gorithm is incapable of both eliminating spontaneous 
nystagmus and increasing VOR gain using closed-loop 
commissures alone. 

The changes in the closed-loop weights that are 
observed in the current model have dynamic conse- 
quences. The closed-loop commissures destabilize the 
network by integrating any imbalance between the VN 
bilaterally. Because imbalance constitutes the largest 
source of error, the adaptive network reduces the 
destabilizing effects of veloticy storage by greatly dimin- 
ishing the closed-loop connections to the lesion-side. To 
illustrate this, perturbing network balance by increasing 
rb produces almost twice as much spontaneous nystag- 
mus at 6,700 passes, where closed-loop interactions 
have increased toward normal, than at 900 passes, 
where closed-loop connections to the lesion-side have 
decreased almost to zero. 

Compari son  to neurophysiologieal  data  

The neurophysiological veracity of the model can be 
assessed by comparing the responses of hidden units to 
the behavior of VN neurons in animals at various 
stages of compensation. The responses of the hidden 
units during each stage of simulated compensation are 
shown in Fig. 4A and C. In the normal network (NM 
stage, dotted), average hidden unit SR is 0.24 (Fig. 4A) 
and average gain is 2.56 (Fig. 4C). Acutely following 
left input removal (AC stage), the SRs of left (dashed) 
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Fig. 4A-D. Behavior of hidden units 
at various stages of compensation in 
the VOR neural network model. 
Spontaneous rate (SR, A and B) and 
gain (C and D) are shown for net- 
works with only hidden layer weights 
modifiable (A and C) or with all 
weights modifiable (B and D). Nor- 
mal average SR (A and B) and gain 
(C and D) shown as dotted lines. 
NM: normal stage; AC: acutely fol- 
lowing lesion; NE: after spontaneous 
nystagmus is eliminated; GR: after 
VOR gain is largely restored (but 
velocity storage has not recovered) 
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and fight (solid) hidden units decrease and increase, 
respectively (Fig. 4A). One left hidden unit (lvnl) is 
actually silenced; lvnl  is the left side member of the 
integrating pair that receives strong inhibition from the 
fight side. Hidden unit gain at AC stage is greatly 
reduced bilaterally (Fig. 4C), as for the outputs. 

At the point where spontaneous nystagmus is elimi- 
nated (NE stage), hidden units SRs are balanced bilat- 
erally, and none of the units remain silent (Fig. 4A). 
When VOR gain is largely restored (GR stage, corre- 
sponding to physiological compensation), the gains of 
the hidden units have substantially increased (Fig. 4C). 
At GR stage, hidden unit SRs have also increased, but 
the average SRs of left and right hidden units are still 
equal; the bilateral SR balance has been strictly main- 
tained (Fig. 4A). 

The model represents so-called type I VN neurons, 
which respond in the same sense as the ipsilateral canal 
afferents from which they receive direct excitatory input 
(Wilson and Melvill Jones 1979). Type II VN neurons, 
which respond in the sense opposite to that of type I 
(ibid.), are implied in the network as the interneurons 
that mediate open- and closed-loop inhibition. Only 
data on type I VN neurons will be considered. A 
comparison reveals that the behavior of hidden units in 
this simulation (with hidden weights only modifiable) 
does not correspond to that observed for real VN 
neurons in compensated animals. 

Neurophysiological data on VN neurons in normal 
and compensated animals have recently become avail- 
able in a number of mammalian species (Precht et al. 
1966; Yagi and Markham 1984; Ried et al. 1984; 
Hamann and Lannou 1988; Smith and Curthoys 
1988ab; Newlands and Perachio 1990a). The results 
from the various studies differ somewhat, due perhaps 
to differences in surgical and pharmacological prepara- 
tion (e.g. cerebellectomy, barbiturate anesthesia) that 
are known to affect compensation (Schaefer and Meyer 
1974). All studies agree, however, that the number of 
active VN neurons on the lesion-side decreases acutely 
following hemilabyrinthectomy, and that many lesion- 
side VN neurons remain silent at the compensated stage 
(corresponding to GR in Fig. 4). Further, most studies 
agree that, acutely, the SRs of intact-side VN neurons 
increase above normal, while those of active lesion-side 
VN neurons decrease below normal, and that a bilateral 
imbalance in SR persists into the compensated stage. 
These findings are in sharp contradistinction to the 
model, where hidden unit SRs are balanced at the 
compensated stage and no units remain silent. Also, 
rather than substantially recovering gain as in the 
model, most studies agree that the gains of VN neurons 
in compensated animals increase little from their low 
values acutely following the lesion. 

The reason why the network model adopts its partic- 
ular (and unphysiological) solution to vestibular com- 
pensation is apparent from a consideration of network 
architecture (Fig. 1). With the hidden-to-output weights 
fixed, output unit responses are a direct reflection of 
hidden unit responses. Thus, output SRs will be bal- 
anced only if hidden SRs are balanced, and output gain 

will increase only if hidden gain increases. It is clear 
from the discrepancy between model and actual data 
that compensation cannot depend solely upon changes 
in synapses onto VN neurons. 

Relaxing constraints 

A better match between model and experimental data 
can be achieved by rerunning the compensation simula- 
tion with all network connections modifiable (Fig. 1). 
Bias-to-output weights are allowed to take on any 
value, while hidden-to-output weights are constrained 
to preserve their reciprocal pattern in sign, but can take 
on any absolute value. The time course of compensa- 
tion in the all-weights-modifiable example is similar to 
the previous case (Fig. 2), but each stage is reached 
after fewer passes. VOR gain, but not velocity storage, 
is restored after 200 passes. Network weights at this 
stage (GR) of the all-weights simulation, which approx- 
imates the extent of physiological compensation, are 
given in Table lB. 

In the all-weights simulation, compensation can be 
produced by synaptic changes at the output as well as 
at the hidden units. Output SR is balanced (and spon- 
taneous nystagmus is eliminated) by developing large 
excitatory and inhibitory bias weights to mr and lr, 
respectively. Similarly, output gain (and thus VOR 
gain) is restored by increases in the aboslute value of 
the reciprocal hidden-to-output connections. At the 
hidden level, bias weight changes are similar to the 
previous case but smaller, while reciprocal weights 
from rhc actually decrease slightly in absolute value. 
The closed-loop commissural weights change little to 
either side. 

The behavior of the hidden units in the all-weights 
simulation is shown in Fig. 4B and D. The SRs and 
gains of hidden units in the normal (NM) and acute 
(AC) stages are reproduced from Fig. 4A and C, re- 
spectively. At NE stage, even though spontaneous nys- 
tagmus is eliminated, there remains a large bilateral 
imbalance in hidden unit SR, with left (dashed) and 
fight (solid) hidden unit SRs lower and higher than 
normal, respectively (Fig. 4B). One lesion-side hidden 
unit (lvn 1) remains silent. At GR stage, the bilateral SR 
imbalance persists, with lvnl still essentially sponta- 
neously silent (Fig. 4B). Hidden unit gain at GR stage 
has increased only modestly from the low acute level 
(Fig. 4D). This small gain increase results primarily 
from hidden SRs being brought away from the low gain 
extremes of the squashing function; the gain of lvn I is 
negligible. The behavior of hidden units in the all- 
weights simulation (Fig. 4B and D) more closely 
matches that of actual VN neurons in compensated 
animals. This modeling result constitutes a testable 
prediction that synaptic plasticity may be occurring at 
the motoneurons as well as at the VN in vestibular 
compensation. This hypothesis does not exclude alter- 
native mechanisms involving changes in separate path- 
ways that are parallel to the main VOR pathway 
represented in the model (see below). 



Network dynamics 

In the acutely lesioned network, silencing of lvn 1 breaks 
the commissural interactions of the integrating pair and 
consequently eliminates velocity storage. Loss of veloc- 
ity storage is advantageous for the network, because 
integration of the pathological VN imbalance caused by 
the lesion is prevented. Many real lesion-side VN neu- 
rons, possibly also inside closed inhibitory loops, are 
silenced by hemilabyrinthectomy (see above). This may 
serve as a fail-safe mechanism in the real VOR, essen- 
tially switching-off velocity storage in the event of large, 
bilateral VN imbalances. 

During the compensatory process, the network with 
all weights modifiable has sufficient degrees of freedom 
to re-establish output balance and gain, without bring- 
ing lvn I back into its operating range. Keeping lvn I off 
helps the network compensate without the destabilizing 
effects of velocity storage. Similarly in compensated 
animals, many lesion-side VN neurons are permanently 
silenced, and VOR time constant remains low, indicat- 
ing minimal recovery of velocity storage (see above). 
This raises the possibility that the real VOR maintains 
stability during and after compensation by keeping 
silent those lesion-side VN neurons that participate in 
closed inhibitory commissural loops and produce insta- 
bility prone, velocity storage integration. 

Loss of velocity storage in the model, in response to 
step head rotational acceleration stimuli, is shown in 
Fig. 5. The expected output step response is shown for 
lr in Fig. 5A (dashed). It consists of exponential rises 
and falls, with the longer VOR time constant, at step 
on-set and off-set, respectively. Instead of expressing 
the longer VOR time constant, the actual step response 
of lr in the all-weights compensated network at GR 
stage (Fig. 5A, dotted) has rise and fall time constants 
that are are equal to those of the canals, indicating 
complete loss of velocity storage. This loss is due to the 
behavior of the hidden units. The step responses of the 
integrating pair of hidden units in the all-weights com- 
pensated network are shown in Fig. 5B (lvnl, lower 
dotted; rvnl, upper dotted). Velocity storage is elimi- 
nated because lon l is silenced, and this breaks the 
closed-loop that lengthens the time constants of both 
hidden and output units. 

Paradoxically, in the normal network with all hid- 
den units active, the output step response rise time 
constant is also equal to that of the canal afferents. This 
is shown for lr in the normal network in Fig. 5A 
(solid). The step responses of the hidden units in the 
normal network are shown in Fig. 5B (lvnI, dashed; 
rvnl, solid). Unit lvn I is quickly driven into cut-off by 
the step stimulus. This breaks the closed-loop and 
eliminates velocity storage, accounting for the short rise 
time constants of hidden and output units. The oppo- 
site occurs at stimulus termination. Unit lvnl comes 
out of rectification, thereby reactivating velocity stor- 
age, which then prolongs the fall time constants of 
hidden and output units as the network relaxes from 
the reciprocal initial condition in which it is left after 
the step. 
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NETWORK CYCLES 
Fig. 5A, B. Responses of units to step head rotational acceleration 
stimuli in the VOR neural network model. A expected response of lr 
with VOR time constant (dashed), and actual responses of /r in 
normal (solid) and all-weights compensated (dotted) networks. B 
response of lvnl (dashed) and rvnl  (solid) in normal network, and of 
lvnl (lower dotted) and rvnl  (upper dotted) in all-weights compen- 
sated network. The all-weights compensated network has reached the 
stage corresponding to physiological compensation, where sponta- 
neous nystagmus has been eliminated and VOR gain largely restored, 
but velocity storage has not recovered 

These modeling results can explain some conflicting 
experimental findings concerning the dynamics of VN 
neurons in normal and compensated animals. The time 
constants of VN neurons were found to be shorter in 
compensated than in normal gerbils for low frequency 
sinusoidal responses (Newlands and Perachio 1990a), 
but not for step on-set responses in cats (Yagi and 
Markham 1984). Rather than being a species difference, 
the disagreement may involve the type of stimulus used. 

Step accelerations are intense stimuli that can drive 
VN neurons to extreme levels. In response to a step in 
their off-directions, many VN neurons in normal cats 
were observed to rectify (ibid.). As shown in Fig. 5, this 
would disrupt commissural interactions and reduce ve- 
locity storage and VN neuron rise time constants, just 
as if those rectifying neurons were silenced as they are 
in compensated animals. In fact, VN neuron rise time 
constants were observed to be short in both normal and 
compensated cats, and equal to about four seconds in 
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both cases (ibid.). This time constant matches that of 
canal afferents in cats (Ezure et al. 1978), indicating 
loss of velocity storage in step rise responses in both 
normal and compensated animals. 

In contrast, sinusoidal stimuli that cause VN neu- 
ron rectification in normal animals can do so only near 
the peaks. Thus velocity storage and time constant are 
reduced more at the peaks than midrange (Anastasio 
1991). In response to low frequency sinusoidal stimuli, 
with peak accelerations in the same range as the step 
stimuli used in the cat study above, many VN neurons 
in normal gerbils were also observed to rectify (New- 
lands and Perachio 1990a). However, because the data 
were subjected to analyses that took account of the 
entire response waveform (ibid.), velocity storage oc- 
curring midrange in normal animals would have regis- 
tered. Time constants therefore would be longer in 
normal than in compensated gerbils, where velocity 
storage was presumably eliminated at all times due to 
VN neuron silencing (ibid.). The difference in time 
constants in normal and compensated networks grows 
larger as the intensity of the sinusoidal stimuli, and 
hidden unit rectification at peak, are reduced. This 
suggests that larger differences in VN neuron time 
constants in normal and compensated gerbils would 
have been observed if lower intensity sinusoidal stimuli 
had been used. 

The normal nonlinear response to step stimuli may 
confer an advantage. Most head rotations probably 
begin with a short step acceleration, followed by a 
period of constant velocity. At step on-set, rectification 
of off-direction VN neurons that participate in closed 
commissural loops would switch-off velocity storage, 
allowing the VOR to respond to its canal input with 
minimum time constant. After the step, those neurons 
would be reactivated, switching velocity storage back 
on. This would maintain the VOR response during the 
period of constant velocity, the period during which the 
canals become inactive. 

Such a difference in rise and fall time constants has 
been observed for VN neurons in monkeys (Waespe 
and Henn 1979). Fall time constants following step 
accelerations were found to range from ten to 25 s, 
reflecting velocity storage. In contrast, rise time con- 
stants at step on-set were shorter than five seconds for 
more intense stimuli, bringing them well within the 
range of canal afferent time constants in monkeys 
(Buttner and Waespe 1981). This indicates that velocity 
storage had been completely inactivated during the 
rising phase of the VN neuron response to the more 
intense step stimuli, and reactivated again during the 
falling phase. 

Experimental considerations 

Vestibular compensation is simulated using a recurrent 
back-propagation learning algorithm. It is unlikely that 
the algorithm used here corresponds to an actual, neu- 
rophysiological learning mechanism (Williams and 
Zipser 1989). However, the learning algorithm and real 

vestibular compensation share a critically important 
goal: the reduction of error. The model closely approx- 
imates actual compensation, and offers testable predic- 
tions so that it can, in any case, be subjected to 
experimental verification. 

One important difference between the real compen- 
sated VOR and the model is that the former is asym- 
metrical. Following compensation for hemilabyrin- 
thectomy, real VOR gain is always higher for head 
rotations to the intact-side (Wolfe and Kos 1977; 
Maioli et al. 1983; Fetter and Zee 1988). It may be that 
the extent of synaptic plasticity is limited for actual 
compensation. Asymmetries could also be simulated in 
the model by limiting connection weights. However, 
arbitrary weight controls defeat the purpose of using a 
learning algorithm. The model is constrained only to 
conform it to known anatomy; the algorithm is other- 
wise free to modify connection weights according to the 
gradient descent of error. 

The fully adaptive model makes only small changes 
in both open- and closed-loop commissural weights, 
suggesting that the commissures may play a minor role 
in compensation. This conjecture, also developed in 
other recent models (Fetter and Zee 1988; Newlands 
and Perachio 1990b), has experimental support. The 
efficacy of inhibitory commissural connections, gauged 
from the responses of lesion-side type I VN neurons to 
electrical stimulation of the intact labyrinth, has been 
compared in normal and compensated cats. Although 
an earlier study found an increase in commissural 
efficacy after compensation (Precht et al. 1966), a more 
recent study failed to confirm this finding (Reid et al. 
1984). In a more striking demonstration, compensation 
of postural deficits following hemilabyrinthectomy was 
observed to occur in commissurotomized rodents 
(Smith et al. 1986). 

The model predicts that synaptic plasticity occurs 
at the motoneuron level in compensation. An alterna- 
tive, but not exclusive, hypothesis is that compensation 
is effected by changes in a separate pathway that is 
parallel to the main VOR pathway represented in the 
model. This is possible considering that the other brain 
areas, such as the cerebellum, cerebellar nuclei and 
inferior olive, are also involved in the compensatory 
process (Schaefer and Meyer 1974; Llinas and Walton 
1979). However, the existence of alternative hypotheses 
should not preclude experimental verification of the 
parsimonious prediction of the model. 

The model predicts that both excitatory and in- 
hibitory inputs from the VN onto motoneurons should 
increase in efficacy during compensation. This predic- 
tion could be tested by comparing eye movement or 
motoneuron responses to electrical stimulation of either 
of the VN before and after compensation. The model 
also predicts increases in excitatory and inhibitory bias 
to motoneurons that were excited and inhibited, respec- 
tively, by relays from the lesioned labyrinth. These bias 
changes will be more difficult to test directly because 
the site (or sites) of nonvestibular input to motoneu- 
rons have not been identified. It is also possible that 
bias is set by some mechanism intrinsic to the motor 



nuclei or to the motoneurons themselves. Bias effects, 
however, may be testable indirectly by pharmacological 
means. 
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